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Composite materials, with statistically distributed thresholds for breakdown of individual elements, are
considered. During the failure process of such materials under external stress �load or voltage�, avalanches
consisting of simultaneous rupture of several elements occur, with a distribution D��� of the magnitude � of
such avalanches. The distribution is typically a power law D�����−�. For the systems we study here, a
crossover behavior is seen between two power laws, with a small exponent � in the vicinity of complete
breakdown and a larger exponent � for failures away from the breakdown point. We demonstrate this analyti-
cally for bundles of many fibers where the load is uniformly distributed among the surviving fibers. In this case
�=3/2 near the breakdown point and �=5/2 away from it. The latter is known to be the generic behavior. This
crossover is a signal of imminent catastrophic failure of the material. Near the breakdown point, avalanche
statistics show nontrivial finite size scaling. We observe similar crossover behavior in a network of electric
fuses, and find �=2 near the catastrophic failure and �=3 away from it. For this fuse model power dissipation
avalanches show a similar crossover near breakdown.
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I. INTRODUCTION

Burst avalanches play an important role in characterizing
fracture-failure phenomena �1–4�. When a weak element in a
loaded material fails, the increased stress on the remaining
elements may cause further failures, and thereby give a fail-
ure avalanche in which several elements fail simultaneously.
With further increase in the load new avalanches occur. The
statistics of such avalanches during the entire failure process
explore the nature of correlations developed within the sys-
tem. From the experimental point of view, failure avalanches
are the only measurable quantity during the fracture-failure
process of composite materials �5–7�. Under quasistatic load-
ing, the system, with some internal load redistribution
mechanism, gradually approaches the global failure point.
Such damage and fracture of materials are of immense inter-
est due to their economic and human costs. Therefore, a fun-
damental challenge is to find methods for providing signals
that warn of imminent global failure �8�. This is of uttermost
importance in, e.g., the diamond mining industry where sud-
den failure of a mine is always catastrophic. These mines are
under continuous acoustic surveillance, but at present there is
no meaningful acoustic signature of imminent disaster. The
same type of question is of course central to earthquake pre-
diction �2–4�.

In this paper we will study crossover behavior of failure
avalanches in the context of two very different models where
the system gradually approaches global failure through sev-
eral intermediate failure events. We find that if a histogram
of the number of elements failing simultaneously is recorded,
it follows a power law with an exponent that crosses over
from one value to a very different value when the system is
close to global failure. This crossover is, then, the signature

of imminent breakdown. The first system studied here is a
bundle of many fibers �9,10� with stochastically distributed
fiber strengths. This model is sufficiently simple that an ana-
lytic treatment is feasible �11–18�. The second system is a
fuse model �1�, a two-dimensional lattice in which the bonds
are fuses, i.e., Ohmic resistors with stochastically distributed
threshold values. This model must be analyzed numerically.
Both models exhibit similar crossovers as signal of imminent
breakdown.

The paper is organized as follows. In Sec. II we present
numerical evidence for the crossover in the fiber bundle
model, backed up by analytic derivations. We pay particular
attention to the burst properties just before complete break-
down. Cascading failures in a fuse model is the theme of
Sec. III.

II. THE FIBER BUNDLE MODEL

A. Numerical evidence

A bundle of many fibers with stochastically distributed
fiber strengths, and clamped at both ends, is a much-studied
model �9–18� for failure avalanches. In its classical version,
a ruptured fiber carries no load and the increased stresses
caused by a failed element are shared equally by all the sur-
viving fibers. The maximal loads xn that the fibers n
=1,2 , . . . ,N are able to carry are picked independently with
a probability density p�x�:

Prob�x � xn � x + dx� = p�x�dx . �1�

A main result for this model is that under mild restrictions on
the fiber strength distribution the expected number D��� of
burst avalanches in which � fibers fail simultaneously is
governed by a universal power law �11�

D��� � �−� �2�

for large �, with �=5/2. However, we will show that when
the whole bundle is close to breaking down the exponent
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crosses over to a lower value. Such a complete breakdown
can be estimated as follows. The force F�x� that the bundle is
able to withstand when all fibers with strengths less than x
have ruptured is proportional to the number of surviving fi-
bers times the strength,

F�x� = NxQ�x� , �3�

where

Q�x� = �
x

�

p�x�dx �4�

is the expected fraction of fibers with strengths exceeding x.
As an example, assume the threshold distribution p�x� to be
uniform in an interval �x0 ,xm�,

p�x� = ��xm − x0�−1 for x0 � x � xm,

0 otherwise.
�5�

In this case we obtain

F�x� = N
x�xm − x�
xm − x0

, �6�

which has a maximum at xc=xm /2. In general we call F�x�
the average force and the value corresponding to the maxi-
mum of F�x� the critical threshold value xc. If F�x� given by
�3� were the actual force, the bundle would break down when
x reaches the value xc. By the existence of fluctuations, how-
ever, the maximum value of the force may actually occur at
a slightly different �probably higher� value of x.

We want to study burst avalanches when the weakest fiber
x0 is close to the critical value xc. In Fig. 1 we show results
for D��� for the uniform distribution with x0=0.9xc. For
comparison, simulation results with x0=0 are shown. In both
cases D��� shows a power-law decay, apparently with an
exponent �=3/2 for x0=0.9xc in contrast to the standard ex-
ponent �=5/2 for the x0=0 case.

In Fig. 2 we show that the same two exponents appear for
a much more concentrated threshold distribution, the Weibull
distribution. We will in the following explain the results as a
crossover phenomenon.

B. Analytical treatment of the crossover

For a bundle of many fibers the number of bursts of
length � is given by �11�

D���
N

=
��−1e−�

�!
�

0

xc

p�x�r�x��1 − r�x���−1exp��r�x��dx ,

�7�

where

r�x� = 1 −
xp�x�
Q�x�

=
1

Q�x�
d

dx
�xQ�x�� . �8�

From the last expression we see that r�x� vanishes at the
point xc where the average force expression �3� is maximal.
If we have a situation in which the weakest fiber has its
threshold x0 just a little below the critical value xc the con-
tribution to the integral in the expression �7� for the burst
distribution will come from a small neighborhood of xc.
Since r�x� vanishes at xc it is small here, and we may in this
narrow interval approximate the �-dependent factors in �7�
as follows:

�1 − r��e�r = exp���ln�1 − r� + r�� = exp�− ��r2/2 + O�r3���

	 exp�− �r�x�2/2� . �9�

We also have

r�x� 	 r��xc��x − xc� . �10�

Inserting everything into Eq. �7�, we obtain to dominating
order

FIG. 1. The distribution of bursts for the strength distribution �5�
with x0=0 and x0=0.9xc. The figure is based on 50 000 samples
with N=106 fibers.

FIG. 2. The distribution of bursts for the Weibull distribution
Q�x�=exp�−�x−1�10�, where 1�x��. Again results for the two
cases x0=1 �squares� and 1.7 �circles� are displayed �xc=1.72 858
for this distribution�. The figure is based on 50 000 samples with
N=106 fibers and the arrow locates the crossover point �c
14.6.
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D���
N

=
��−1e−�

�!
�

x0

xc

p�xc�r��xc��x − xc�e−�r��xc�2�x − xc�2/2dx

=
��−2e−�p�xc�

�r��xc���!
�e−�r��xc�2�x − xc�2/2�

x0

xc

=
��−2e−�

�!

p�xc�
�r��xc��

�1 − e−�/�c� , �11�

with

�c =
2

r��xc�2�xc − x0�2 . �12�

By use of the Stirling approximation
� ! 
��e−��2��—a reasonable approximation even for
small �—the burst distribution �11� may be written as

D���
N

= C�−5/2�1 − e−�/�c� , �13�

with a nonzero constant

C = �2��−1/2p�xc�/�r��xc�� . �14�

We see from �13� that there is a crossover at a burst length
around �c, so that

D���
N

� ��−3/2 for � � �c,

�−5/2 for � � �c.
�15�

We have thus shown the existence of a crossover from the
generic asymptotic behavior D��−5/2 to the power law D
��−3/2 near criticality, i.e., near global breakdown. The fact
that there may be a different burst distribution exponent near
breakdown has been noted by Sornette �see Ref. �1� and
references therein�, and observed by Zapperi et al. �19� for a
fuse model. The crossover is a universal phenomenon, inde-
pendent of the threshold distribution p�x�. In addition we
have located where the crossover takes place.

For the uniform distribution �c= �1−x0 /xc�−2 /2, so for
x0=0.9xc, we have �c=50. The final asymptotic behavior is
therefore not visible in Fig. 1. The crossover is seen better
for x0=0.8xc, as in Fig. 3. Now a crossover is clearly ob-
served near �=�c=12.5, as expected.

The simulation results shown in the figures are based on
averaging over a large number of fiber bundles with moder-
ate N. For applications it is important that crossover signals
are seen also in a single sample. We show in Fig. 4 that
equally clear power laws are seen for a single fiber bundle
when N is large.

C. Sampling a finite interval

Above we have explained the crossover in burst distribu-
tions in which all bursts up to complete breakdown are
counted. For the purpose of finding signals of imminent
global failure one must, of course, determine burst distribu-
tions short of complete breakdown. Consequently we are in-
terested in sampling a finite interval �x0 ,xf�, with xf �xc.
When the interval is in the neighborhood of xc we have, as in
Eq. �11�,

D���
N



��−2e−�p�xc�

�r��xc���!
�e−r��xc�2�x − xc�2�/2�

x0

xf �16�


C�−5/2�e−��xc − xf�
2/a − e−��xc − x0�2/a� , �17�

with a=2/r��xc�2.
This shows a crossover:

FIG. 3. The distribution of bursts for the uniform threshold dis-
tribution �5� with x0=0.80xc. The figure is based on 50 000 samples
with N=106 fibers. The straight lines represent two different power
laws, and the arrow locates the crossover point �c
12.5.

FIG. 4. Avalanche distribution for the uniform threshold distri-
bution �5� for a single fiber bundle with 107 fiber: all avalanches
�squares� and avalanches near the critical point �circles�. Dotted
straight lines are the best fits to the power laws.
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D���
N

= �C̃�−3/2 for � � a/�xc − x0�2,

C�−5/2 for a/�xc − x0�2 � � � a/�xc − xf�2,

�18�

with a final exponential behavior when ��a / �xc−xf�2. Here

C̃=Ca−1��xc−xf�2− �xc−x0�2�.
The 3/2 power law will be seen only when the beginning

of the interval, x0, is close enough to the critical value xc to
create a sizable range of bursts obeying this power law. Ob-
serving the 3/2 power law is therefore a signal of imminent
system breakdown.

D. Burst avalanches at criticality

Precisely at criticality �x0=xc� we have �c=�, and conse-
quently the �=5/2 power law is no longer present. We will
now argue, using a random walk representation, that at criti-
cality the burst distribution follows a 3/2 power law. The
load on the bundle when the kth fiber with strength xk is
about to fail is proportional to

Fk = xk�N − k + 1� . �19�

The expectation value of this is the average force equation
�3�. At criticality the F is, on the average, stationary. It is,

however, the fluctuations of this load that now determine the
size of the bursts. It has been shown �12� that the probability
��f�df that the difference Fk+1−Fk lies in the interval �f , f
+df� is given by

��f� = 1 − r�xk�
xk

e−�1−r�xk���1+f/xk� for f 	 − xk,

0 for f � − xk,

�20�

where r�x� is given by Eq. �8�. At criticality r=0, resulting in

�c�f� = �xc
−1e−1e−f/xc for f 	 − xc,

0 for f � − xc.
�21�

This can be considered as the step probability in a random
walk. The random walk is unsymmetrical, but unbiased,
�f�=0, as it should be at criticality.

A first burst of size � corresponds to a random walk in
which the position after each of the first �−1 steps is lower
than the starting point, but after step no. � the position of the
walker exceeds the starting point. The probability of this
equals

Prob��� = �
−x

0

��f1�df1�
−x

−f1

��f2�df2�
−x

−f1−f2

��f3�df3 . . . �
−x

−f1−f2−¯−f�−2

��f�−1�df�−1�
−f1−f2−¯−f�−1

�

��f��df�. �22�

The last integral is easy. By means of �21� we have

�
−f1−f2−¯−f�−1

�

��f��df� = e−1e�f1+f2+¯+f�−1�/x. �23�

Since ��f�ef/x=e−1 /x we end up with

Prob��� = e−��
−1

0

df1�
−1

−f1

df2


�
−1

−f1−f2

df3. . .�
−1

−f1−f2−¯−f�−2

df�−1. �24�

For simplicity we have put xc=1, since the quantity xc sim-
ply determines the scale of the steps, and here it is only
relative step lengths that matters.

In the Appendix we have evaluated the expression �22�,
with the result

Prob��� =
e−���−1

�!



1
�2�

�−3/2, �25�

and also shown that these probabilities satisfy

�
�=1

�

Prob��� = 1. �26�

The result �26� is strictly applicable only in the limit N
→�; for finite N the sum has to be slightly less than unity.
For one thing � cannot exceed N, and breaking off the sum
at �=N would decrease the sum by an amount of order
N−1/2. In reality, the sum deviates from unity by an amount of
order N−1/3 �see the following section�.

The simulation results in Fig. 5 are in excellent agreement
with the distribution �25�. At the completion of a burst the
force, i.e., the excursion of the random walk, is larger than
all previous values. Therefore one may use this point as a
new starting point to find, by the same calculation, the dis-
tribution of the next burst, etc. Consequently the complete
burst distribution is essentially proportional to �−3/2 as ex-
pected. In the next section we study the burst distribution at
criticality in more detail, in particular its dependence upon
the bundle size N.

E. Finite-size effects at criticality

When the fiber bundle is subcritical the average number
of bursts of a given length will be proportional to the bundle
size N. When the bundle is critical this is no longer so. Each
burst will produce a non-negligible weakening of the bundle,
so that the bundle will be slightly more supercritical. Then
the probability of a total breakdown will increase, and the
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probability of a burst of finite length decreases.
To study this quantitatively we therefore have to specify

not only the size � of a burst, but also if it is the first burst
after starting, the second, the third, etc. Let Pn��� be the
number of bursts of size � that occur as the nth burst. If we
start precisely at criticality, we have already calculated

P1��� =
e−���−1

�!
, �27�

by Eq. �25�. We will in particular study how the probability
decreases with increasing n, so we form the ratios

Rn��� =
Pn���
P1���

. �28�

We start by investigating the � dependence of these ra-
tios, and for simplicity we work with the critical uniform
threshold distribution throughout this subsection. In Fig. 6
we have plotted Rn��� versus �. The ratios �28� depend upon
n, but surprisingly we cannot detect any systematic depen-
dence on �. We may therefore obtain the dependence upon
n and N by sticking to one fixed �; for simplicity we take
�=1.

In Fig. 7 we have plotted Rn�1� for four different values of
N and for n=2, 3, 4, and 5. The figure shows that Rn�1� for
each value of n apparently depends linearly on N−1/3 and that
1−Rn�1� apparently is proportional to n−1. Empirically the
data can reasonably well be represented by

Rn�1� = 1 − 1.27�n − 1�N−1/3. �29�

More generally we may assume that the linear function is a
limiting form of a more general function:

Rn�1� = F�x� with x = �n − 1�N−1/3, �30�

where F�0�=1 and F�x�
1−1.27x for small x. For large x
we expect F�x� to approach zero.

If �30� is correct we should have a data collapse onto the
single curve F�x�. Figure 8 shows that the data collapse
works well. In order to test the function F�x� beyond its
initial linear behavior, we have added a few points with
larger values of x. In addition to the results of Fig. 7�a� we
have obtained results for n=10, 20, and 30, with N=5000,
10 000, and 80 000 �Fig. 7�b��.

F�x� is seen to decrease towards zero for increasing x, and
the empirical expression

F�x� 

2

1 + e2.54x �31�

seems to represent the data in Fig. 8 very well.
The relation �30� implies some interesting consequences.

Let us first consider the total number of bursts of a given
size:

D��� = �
n

Pn��� = P1����
n

Rn��� 
 P1����
n

Rn�1�

= P1����
n

F��n − 1�N−1/3�


 P1����
1

�

F��n − 1�N−1/3�dn

= P1���N1/3�
0

�

F�x�dx . �32�

We have used that Rn��� is essentially independent of �
�Fig. 6�, and that due to smallness of N−1/3 we may replace
summation by integration.

The conclusion is that the total number of bursts should
scale as N1/3. The simulation results presented in Table I are
in excellent agreement with this N dependence.

FIG. 5. Distribution of first bursts �squares� and total bursts
�circles� for the critical strength distribution �5� with x0=xc. The
simulation results are based on 106 samples with N=80 000 fibers.
The star symbol stands for the analytic result �25�.

FIG. 6. Simulation results for the � dependence of the ratios
�28�. We have used the uniform strength distribution at criticality.
The figure is based on 107 samples with N=40 000 fibers. The
straight lines are the average values.
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According to �32� the numbers in Table I should all be the
same �or nearly the same� and represent the integral of F.
The integral of the empirical representation �31� of F�x�
equals 0.546, in close agreement with the results in the table.

We have also recorded the number D�failure� of immedi-
ate failures of the fiber bundle �i.e., with no finite bursts at
all�. We have presented the numbers in Table I. The number
of immediate failures decreases with increasing N as N−1/3.
The reason for the decrease is that in a large bundle it is
more probable to find a fiber sufficiently strong to prevent
immediate failure.

It remains a challenge to derive these finite-size scaling
results analytically.

III. BURST AVALANCHES IN THE FUSE MODEL

Let us test the crossover phenomenon in a more complex
situation than for fiber bundles. We have studied burst distri-
butions in the fuse model �1�. It consists of a lattice in which
each bond is a fuse, i.e., an Ohmic resistor as long as the
electric current it carries is below a threshold value. If the
threshold is passed, the fuse burns out irreversibly. The

threshold t of each bond is drawn from an uncorrelated dis-
tribution p�t�. The lattice is placed between electrical bus
bars and an increasing current is passed through it. Numeri-
cally, the Kirchhoff equations are solved with a voltage dif-
ference between the bus bars set to unity. The ratio between
current ij and threshold tj for each bond j is calculated and
the bond having the largest value, maxj�ij / tj�, is identified
and subsequently irreversibly removed. The lattice is a two-
dimensional square one placed at 45° with regard to the bus
bars. The threshold distribution is uniform on the unit inter-
val. All fuses have the same resistance. The burst distribution
follows the power law �2� with �=3, which is consistent with
the value reported in recent studies �19,20�. We show the
histogram in Fig. 9. With a system size of 100
100, 2097
fuses blow on the average before catastrophic failure sets in.
When measuring the burst distribution only after the first
2090 fuses have blown, a different power law is found, this
time with �=2. After 1000 blown fuses, on the other hand, �
remains the same as for the histogram recording the entire
failure process �see Fig. 9�. Zapperi et al. �19�, who study the
fuse model on the diamond and the triangular lattices, find
significant variation with the lattice type. Their exponent val-
ues for the diamond lattice are 2.75 and 1.90, not very dif-
ferent from the values 3.0 and 2.0 in our Fig. 9.

In Fig. 10, we show the power dissipation E in the net-
work as a function of the number of blown fuses. The dissi-

TABLE I. Simulation results.

N 5000 10000 20000 40000 80000

N−1/3D�1� / P�1� 0.545 0.546 0.546 0.550 0.550

N−1/3D�2� / P�2� 0.546 0.549 0.550 0.547 0.552

N−1/3D�3� / P�3� 0.542 0.550 0.548 0.547 0.546

N−1/3D�4� / P�4� 0.538 0.548 0.544 0.548 0.546

N−1/3D�5� / P�5� 0.542 0.545 0.546 0.548 0.550

N1/3D�failure� 1.2154 1.2319 1.2346 1.2293 1.2307

FIG. 8. The data collapse onto a single curve F�x� �dotted line
represents Eq. �31�� where x= �n−1�
N−1/3. We have taken N
=5000, 10 000, 20 000, 40 000, 80 000 and n=2, 3, 4, 5, 10,20,30.
Averages are taken over 107 samples, except for N=80 000 �106

samples�.

FIG. 7. Simulation results for the ratios Rn�1� as function of
N−1/3 �a� and as function of n �b�. The dotted lines represent the
functional forms �29� �a� and �31� �b�. The results are based on 107

samples, except for N=80 000 �106 samples�.
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pation is given as the product of the voltage drop across the
network V times the total current that flows through it. In
Fig. 11, we show the power dissipation as a function of the
total current. The breakdown process starts by following the
lower curve, and follows the upper curve returning to the
origin. It is interesting to note the linearity of the unstable
branch of this curve. In Fig. 12, we record the avalanche
distribution for power dissipation, Dd���. Recording, as be-
fore, the avalanche distribution throughout the entire process
and recording only close to the point at which the system
catastrophically fails, results in two power laws, with expo-
nents �=2.7 and 1.9, respectively. It is interesting to note that
in this case there is not a difference of unity between the two
exponents. The power dissipation in the fuse model corre-
sponds to the stored elastic energy in a network of elastic

elements. Hence, the power dissipation avalanche histogram
would in the mechanical system correspond to the released
energy. Such a mechanical system would serve as a simple
model for earthquakes.

The Gutenberg-Richter law �2–4� relating the frequency
of earthquakes with their magnitude is essentially a measure
of the elastic energy released in the earth’s crust, as the mag-
nitude of an earthquake is the logarithm of the elastic energy
released. Hence, the power dissipation avalanche histogram
Dd��� in the fuse model corresponds to the quantity that the
Gutenberg-Richter law addresses in seismology. Further-
more, the power-law character of Dd��� is consistent with
the form of the Gutenberg-Richter law. It is then intriguing
that there is a change in exponent � also for this quantity
when failure is imminent. Recently Kawamura �22� has ob-
served a similar decrease in exponent value of the local mag-
nitude distribution of earthquakes in Japan as the mainshock
is approached. This encourages the possibility of using the
crossover signals as a practical warning sign.

FIG. 9. Burst distribution in the fuse model: System size is
100
100 and averages are taken for 300 samples. On the average,
catastrophic failure sets in after 2097 fuses have blown. The circles
denote the burst distribution measured throughout the entire break-
down process. The squares denote the burst distribution based on
bursts appearing after the first 1000 fuses have blown. The triangles
denote the burst distribution after 2090 fuses have blown. The two
straight lines indicate power laws with exponents �=3 and 2,
respectively.

FIG. 10. Power dissipation E as a function of the number of
broken bonds in the fuse model. The system size and number of
samples are the same as in Fig. 9.

FIG. 11. Power dissipation E as a function of the total current I
flowing in the fuse model. The system size and number of samples
are the same as in Fig. 9.

FIG. 12. The power dissipation avalanche histogram Dd��� in
the fuse model. The slopes of the two straight lines are −2.7 and
−1.9, respectively. The circles show the histogram of avalanches
recorded through the entire process, whereas the squares show the
histogram recorded only after 2090 fuses have blown. The system
size and number of samples are the same as in Fig. 9.
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IV. CONCLUDING REMARKS

We have studied the avalanche distribution D�����−� in
the fiber bundle model, and have shown analytically that
close to complete breakdown it exhibits a crossover behavior
between two power laws with exponents �=5/2 and 3/2.
This crossover behavior is universal in the sense that, under
mild assumptions, it does not depend on the statistical distri-
bution of the thresholds. In the critical situation an argument
based on a unbiased unsymmetrical random-walk scenario
explains the exponent �=3/2. Near criticality the avalanche
distribution depends on the system size in a nontrivial way.
For this case we present quantitative results that may be
summarized by a finite-size scaling function �Eq. �31��.

The crossover behavior is not limited to the fiber bundle
model. We show numerically that the same crossover phe-
nomenon occurs in the two-dimensional fuse model. The ex-
ponents are different, though, �=2 near breakdown and �
=3 away from it. For this fuse model the power dissipation
avalanches show a crossover, with power law exponents �
=2.7 and �=1.9. Such crossovers signal that catastrophic
failure is imminent, and has therefore a strong potential as a
useful detection tool for systems with slow buildup of ten-
sion. Some of the present results have already been pub-
lished as a Letter �18�.
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APPENDIX: PROOF OF EQ. (25)

We evaluate here the multiple integral in Eq. �22�

Prob��� = e−��
−1

0

df1�
−1

−f1

df2�
−1

−f1−f2


df3 ¯ �
−1

−f1−f2−¯−f�−2

df�−1. �A1�

We introduce the new variables

y1 = − f1,

y2 = − f1 − f2,

¯ = ¯ ,

y�−1 = − f1 − f2 − ¯ − f�−1, �A2�

satisfying

0 � y1 � 1,

0 � y2 � 1 + y1,

0 � yi � 1 + yi+1, i = 2,3, . . . ,� − 1. �A3�

Then

Prob��� = e−��
0

1

dy1�
0

1+y1

dy2�
0

1+y2

¯ �
0

1+y�−2

dy�−1.

�A4�

Defining V0�y�=1, and

Vd�y� = �
0

1+y

Vd−1�z�dz , �A5�

we have

Prob��� = e−�V�−1�0� . �A6�

Equation �A5� can be solved by iteration. By calculating the
first polynomials Vn�y� one is led to assume

Vd−1�y� =
1

d!�i=1

d−1

dd−i−1�d − 1

i
��i + 1�yi. �A7�

Suppose this is valid up to some value of d−1. Then use
�A5� to compute Vd. The integration is trivial, leaving

Vd�y� =
1

d!�i=0

d−1 �d − 1

i
�dd−i−1�1 + y�i+1

=
1

d!�i=0

d−1

�
m=0

i+1 �d − 1

i
��i + 1

m
�dd−i−1ym

=
1

d! �
m=0

d

�
i=m−1

d−1 �d − 1

i
��i + 1

m
�dd−i−1ym

=
1

d! �
m=0

d

S�m�ym, �A8�

with

S�m� = �
i=m−1

d−1 �d − 1

i
��i + 1

m
�dd−i−1. �A9�

Since

�i + 1

m
� = � i

m − 1
� + � i

m
� �A10�

and

�a

b
� = 0 for b � 0 or b � a , �A11�

we may write

S�m� = �
i=0

d−1 �d − 1

i
��� i

m
� + � i

m − 1
��dd−i−1. �A12�

To evaluate S�m� we differentiate the binomial expression

�
i=0

d−1 �d − 1

i
�x1 = �1 + x�d−1 �A13�

m times with respect to x:
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�
i=0

d−1 �d − 1

i
�i�i − 1� ¯ �i − m + 1�xi−m

= �d − 1��d − 2� ¯ �d − m��1 + x�d−1−m, �A14�

or

�
i=0

d−1 �d − 1

i
�� i

m
�m ! xi−m =

�d − 1�!
�d − m − 1�!

�1 + x�d−1−m.

�A15�

Putting now x=1/d, and multiplying both sides of the equa-
tion by dd−1−m /m!, we obtain

s�m� � �
i=0

d−1 �d − 1

i
�� i

m
�dd−i−1 =

�d − 1�!
�d − m − 1� ! m!

�1

+ d�d−1−m. �A16�

By Eq. �A12� then

S�m� = s�m� + s�m − 1� = � d

m
��1 + d�d−m�1 + m�/�1 + d� .

�A17�

Finally Eq. �A8� gives

Vd�y� =
1

�1 + d�! �
m=0

d � d

m
��d + 1�d−m�1 + m�ym. �A18�

Since this is in accordance with the assumption �A7�, and
since �A7� is correct for d=2, the induction proof works.

Finally, using �A6�, the probability we seek is

Prob��� = e−�V�−1�0� =
e−���−1

�!
, �A19�

which is Eq. �25� in the main text.
Let us also sum these probabilities over all burst lengths,

S = �
�=1

�
e−���−1

�!
= �

�=1

�
e−�

�!
� d�−1

dS�−1eS��
S=0

. �A20�

We may now appeal directly to the theorem of Lagrange
�21� to conclude that the sum satisfies the equation

S = e−1eS. �A21�

Since Se−S is always less than or equal to e−1 for nonnegative
S, we must have

S = 1, �A22�

which is Eq. �26� in the main text.
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